Ralston
El metodo de Ralston calcula la pendiente en un punto inicial (xi,yi)
m=k1=f (xi,yi)
y con el estima un nuevo punto;
(xi+0.75*h , yi+0.75*k1h)
Con este punto calcula una nueva pendiente
m=k2=f (xi+0.75*h , yi+0.75k1h)
y con esta dos pendiente calcula el yi+1
yi+1=yi+(k1+2*k2)*h/3
Ejemplo
(dy/dx)=yx^2-1.1y donde y(0)=1 para x=[0,1]
Con un h=0.25 y realiza nuevamente tus calculos pero con h=0.05
h= | 0.25 | |||||
xi | yi | k1 | Xi+0.75h | yi+0.75k1h | k2 | yi+1=(k1+2k2)*h/3 |
0 | 1.0000 | -1.1 | 0.1875 | 0.79375 | -0.8452197 | 0.76746338 |
0.25 | 0.7675 | -0.7962433 | 0.4375 | 0.61816777 | -0.5616634 | 0.60749921 |
0.5 | 0.6075 | -0.5163743 | 0.6875 | 0.51067903 | -0.3203713 | 0.5110728 |
0.75 | 0.5111 | -0.2747016 | 0.9375 | 0.45956625 | -0.1016072 | 0.47124646 |
1 | 0.4712 | |||||
h= | 0.05 | |||||
xi | yi | k1 | Xi+0.75h | yi+0.75k1h | k2 | yi+1=(k1+2k2)*h/3 |
0 | 1 | -1.1 | 0.0375 | 0.95875 | -1.0532768 | 0.94655744 |
0.05 | 0.9466 | -1.0388468 | 0.0875 | 0.90760069 | -0.9914119 | 0.89619626 |
0.1 | 0.8962 | -0.9768539 | 0.1375 | 0.85956424 | -0.9292695 | 0.84893971 |
0.15 | 0.8489 | -0.9147325 | 0.1875 | 0.81463724 | -0.8674614 | 0.80477879 |
0.2 | 0.8048 | -0.8530655 | 0.2375 | 0.77278884 | -0.8064776 | 0.76367845 |
0.25 | 0.7637 | -0.7923164 | 0.2875 | 0.73396658 | -0.7466963 | 0.7255833 |
0.3 | 0.7256 | -0.7328391 | 0.3375 | 0.69810183 | -0.6883939 | 0.69042285 |
0.35 | 0.6904 | -0.6748883 | 0.3875 | 0.66511454 | -0.6317549 | 0.65811621 |
0.4 | 0.6581 | -0.6186292 | 0.4375 | 0.63491762 | -0.5768822 | 0.62857632 |
0.45 | 0.6286 | -0.5641472 | 0.4875 | 0.6074208 | -0.5238055 | 0.60171368 |
0.5 | 0.6017 | -0.5114566 | 0.5375 | 0.58253406 | -0.4724897 | 0.57743975 |
0.55 | 0.5774 | -0.4605082 | 0.5875 | 0.56017069 | -0.4228413 | 0.5556699 |
0.6 | 0.5557 | -0.4111957 | 0.6375 | 0.54025006 | -0.3747141 | 0.53632617 |
0.65 | 0.5363 | -0.363361 | 0.6875 | 0.52270013 | -0.3279127 | 0.51933973 |
0.7 | 0.5193 | -0.3167972 | 0.7375 | 0.50745983 | -0.2821952 | 0.50465327 |
0.75 | 0.5047 | -0.2712511 | 0.7875 | 0.49448135 | -0.2372738 | 0.49222329 |
0.8 | 0.4922 | -0.2264227 | 0.8375 | 0.48373244 | -0.1928127 | 0.48202249 |
0.85 | 0.4820 | -0.1819635 | 0.8875 | 0.47519886 | -0.1484254 | 0.47404225 |
0.9 | 0.4740 | -0.1374723 | 0.9375 | 0.46888704 | -0.103668 | 0.46829545 |
0.95 | 0.4683 | -0.0924884 | 0.9875 | 0.46482713 | -0.0580308 | 0.46481961 |
1 | 0.4648 |
Grafica que compara la solucion analitica con la obtenida por el metodod con h=0.25 u h=0.05.